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 Scientists have been engaged in research on the reactions of oxaloacetic ester since the end of the 
nineteenth century. A large contribution to this field was made by Wislicenus, who extensively studied the 
chemical transformations of oxaloacetic ester [1]. The interest in oxaloacetic ester was prompted by the presence 
of four reaction centers in its molecule, making it possible the use it for the production of a large number of 
different compounds. In this review articles concerning the use of oxaloacetic ester in the synthesis of both 
monocyclic and condensed heterocyclic compounds are analyzed. 
 
 
1. OXALOACETIC ESTER IN THE SYNTHESIS OF MONOHETEROCYCLES 
 
 There are a large number of reactions in which oxaloacetic ester is used as starting compound in the 
synthesis of five-membered (furan and pyrrole derivatives) and six-membered (pyridine and pyrimidine 
derivatives) heterocycles. 
 Thus, for example, oxaloacetic ester (1) undergoes intramolecular ester condensation, forming the dioxo 
derivative of furan 2 [2]. 
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 Under the action of potassium acetate two molecules of oxaloacetic ester are capable of entering into 
aldol condensation followed by cyclization to the furan derivative 3 [3, 4]. 
 

CH2

CO

CO2Et

CO2Et

CH2 C
H COOH

CO2Et

CO2Et

CO2Et

CO2Et

O

CH2CO2Et

O
O

EtO2C
CO2Et

2

3

– EtOH

 
 
 The reaction with benzaldehyde takes place similarly with the formation of compound 4 [4]. 
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 α-Keto-γ-trichloromethyl-γ-lactone 5 was obtained from the sodium salt of oxaloacetic ester and 
trichloroacetaldehyde [5]. 
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 Triethyl 2,3,4-furantricarboxylate (6) was prepared from the sodium derivative of oxaloacetic ester and 
ethyl bromopyruvate in an alkaline medium [6]. 
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 Compound 6 is also produced in a mixture with 4,5-diethoxycarbonyl-3-hydroxy-2-pyranone (8) by 
sulfuric acid treatment of the product 7 from the condensation of oxaloacetic ester with formyl succinate [7]. 
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 Oxaloacetic ester is used in the synthesis of herbicides – derivatives of thiohydantoin. For example, 
compound 9 is an effective low-toxicity agent for weed control [8]. 
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 The cyclocondensation of oxaloacetic ester with methyl isocyanate in the presence of triethylamine gave 
ethyl 1-methyl-2,3,5-trioxopyrrolidine-4-carboxylate (10). Analogous reactions take place successfully with 
other isocyanates (PhNCO, C10H7NCO) [9]. 
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 The reaction of ethyl oxaloacetate with a mixture of an aromatic aldehyde and arylamine leads to 
1,5-diaryl-4-ethoxycarbonyltetrahydropyrrole-2,3-diones 11a,c-e, which give O-alkylation products in reaction 
with diphenylazomethane. In the opinion of the authors compounds 11a,c-e undergo suprasurface [1,3] sigma-
tropic rearrangement to 1,5-diaryl-4-ethoxycarbonyl-4-diphenylmethyltetrahydropyrrole-2,3-diones 12 when 
heated [10]. 
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 The synthesis of 2,3-bifunctional substituted 4-nitropyrroles can be achieved by the reaction of the 
isoxazolone 13 with various β-keto esters. If the sodium salt of oxaloacetic ester is used as β-keto ester, 
2,3-diethoxycarbonyl-1-methyl-4-nitropyrrole (14) is formed [11]. 
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 The authors proposed the following scheme for the reaction. 
 

N
O

NO2

OMe

O

O

O
OEt

EtO

O

O

O

H

N
O

N

OMe

O

O

OEt

EtO

O

O

N
O O

Me

NO2

O
OEt

EtO
N

O

O

N
O

O

Me

EtO

EtO2C

N

O

Me

O2N

CO2Et

EtO2C

O

N

Me

O2N H

EtO2C

CO2Et

N

O2N

Me

CO2Et

CO2Et

N

O2N

Me

OH

CO2Et

CO2Et

–

–

–

–

–

–

–

–

CO2

CO2

N-attack

С-attack

–

+

+

 
 
 If oxaloacetic ester is used in a reaction with a substituted hydrazine compound 15 is obtained [12] in the 
keto and enol forms (1:1). 
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 The ester 16 is readily formed during the condensation of oxaloacetic ester and urea, and its alkaline 
hydrolysis leads to orotic acid (2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid) (17) [13, 14]. 
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 If N-methylurea is used, the N-methyl derivative of orotic acid 1-methyl-2,6-dioxo-1,2,3,6-
tetrahydropyrimidine-4-carboxylic acid (18) is obtained [15]. 
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 The analogous cyclocondensation of oxaloacetic ester with urea in the presence of orthoformic ester 
leads to the formation of diethyl 2-hydroxypyrimidine-4,5-dicarboxylate (19) [16, 17]. 
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 Oxaloacetic ester is also used in the synthesis of 2,3,4,5-tetrahydropicolinic acid – an intermediate in the 
synthesis of the enzyme L-lipase. In reaction with formaldehyde it finally forms a mixture of compounds 20 and 
21 [18]. 
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 Pyridine-2,3-dicarboxylic acid and its derivatives are biologically active compounds. American scientists 
proposed and patented an effective method for the synthesis of diethyl pyridine-2,3-dicarboxylate (22) based on 
the successive reaction of ethyl vinyl ether with the Vilsmeier reagent, oxaloacetic ester, and a source of 
ammonia [19]. 
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 The reaction of oxaloacetic ester with nitroacetamide in absolute alcohol at 0°C leads to the formation of 
diethyl 1,6-dihydro-5-nitro-6-oxo-2,3-pyridinedicarboxylate (23) [20]. 
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 If cyanoacetamide is used in this reaction 3-cyano-4-ethoxycarbonyl-2,6-dihydroxypyridine (24) is 
obtained [21]. 
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 Oxaloacetic ester reacts readily with unsubstituted indoles. The reaction is similar to the condensation of 
indole with pyruvic acid. If oxaloacetic ester is heated with two moles of indole in a solution of common salt in 
acetic acid compound 25 is formed [22]. 
 N-(2-Piperazinoethyl)-3,3-di(1H-indol-3-yl)succinimide (26) was obtained by heating compound 25 in 
N-(2-aminoethyl)piperazine. 
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 In addition, when heated with hydrazine hydrate in a stream of nitrogen, compound 25 forms N-amino-
3,3-di(1H-indol-3-yl)succinimide (27), which is reduced by hydrazine hydrate in dioxane in the presence of 
Raney nickel to 3,3-di(1H-indol-3-yl)succinimide (28). 
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2. OXALOACETIC ESTER IN THE SYNTHESIS OF CONDENSED HETEROCYCLES 
 
2.1. Production of Quinoline Systems from Arylamines and Oxaloacetic Ester 
under the Conditions of the Conrad–Limpach Reaction 
 
 Widely differing amines have been used in condensations with β-keto esters in modifications of the 
Conrad–Limpach and Knorr methods for the synthesis of quinolines [23-25]. 
 2-Ethoxycarbonyl-4-hydroxyquinolines 29 are formed readily from oxaloacetic ester as the β-keto ester 
component in the Conrad–Limpach synthesis, and their hydrolysis and decarboxylation lead to 4-hydroxy-
quinolines [23]. 
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 This method gives high yields under conditions depending on the nature of the substituents in the 
benzene ring. Many of the obtained acids can be decarboxylated in an inert solvent at ~250-270°C. However, in 
the presence of electron-accepting substituents like the nitro group decarboxylation is better realized by heating 
the silver salts of the acids (with poor yields). 
 As expected, if meta-substituted anilines are heated with oxaloacetic ester a mixture of 5- and 
7-substituted quinolines is formed. The ratio of the esters of 5- and 7-chloroquinoline-2-carboxylic acids, 
obtained from m-chloroaniline, varies from approximately 12:1 (if the ratio of the inert solvent and the initial 
condensation product in the reaction mixture at the thermal cyclization stage is 1:1) to 0.4:1 (if a dilution of 30:1 
is used during cyclization). The ratio of the isomers is evidently affected by steric factors. 
 A mixture of the ethyl esters of 5-bromo- (30a) and 7-bromo-4-hydroxy-6-methoxyquinoline-
2-carboxylic acids  (30b), which can be separated by crystallization from methanol, is formed during the 
condensation of 3-bromo-4-methoxyaniline with oxaloacetic ester followed by cyclization of the intermediately 
formed enamine [26]. 
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 Of course, if there is only one vacant site for cyclization in the substituted aniline substrate only 
4-hydroxyquinoline is formed with a high yield. For example, the yield of 7-chloro-2-ethoxycarbonyl-
4-hydroxy-8-methylquinoline (31), produced by the condensation of sodiooxaloacetic ester with 3-chloro-
2-methylaniline, approaches 90% [27]. 
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 However, the formation of enamines is not the only path in the reaction of oxaloacetic ester with 
aromatic amines. The presence of the ester group still suggests the possibility of the formation of amides, the 
subsequent cyclization of which should lead to isomeric 2-hydroxyquinolines. According to data in [23], such a 
reaction path is realized when an alcohol solution of p-anisidine is boiled with oxaloacetic ester. In this case 
ethyl 2-hydroxyquininate 32 is formed. 
 

NH2

MeO

N OH

CO2Et
MeOCH2

N
H

O

O
CO2Et

MeO

+
250°C

32

∆

EtOH
1

 
 
 By changing the conditions in the condensation of p-anisidine with oxaloacetic ester (heating in 
chloroform in the presence of sulfuric acid) it is possible to direct the reaction toward the formation of the imine, 
the subsequent cyclization of which in dowtherm leads to the formation of 2-ethoxycarbonyl-4-hydroxy-6-
methoxyquinoline (33). Hydrolysis of the ester 33 with sodium hydroxide followed by decarboxylation at 250°C 
gives compound 34 [28]. 
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 If condensed aromatic amines are brought into reaction with oxaloacetic ester it is possible to synthesize 
tricyclic compounds. For instance, there is a method for the production of derivatives of 4-hydroxy-
benzoquinolines 36 with an ethoxycarbonyl group at position 2 by using 2-naphthylamine as the aromatic amine 
component [23]. 
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 Oxaloacetic ester can be regarded as a carboxylated pyruvic ester, which can enter into a Doebner 
“pyruvic synthesis.” Thus, it was found that benzylidene-β-naphthylamine readily adds oxaloacetic ester with the 
formation of compound 37, which undergoes cyclization to the corresponding benzoquinoline 38 [23]. 
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 Various arylidene derivatives of naphthylamine can be used in the reaction. Thus, β-naphthylamine also 
gives the corresponding benzoquinoline in reaction with m-nitrobenzaldehyde and oxaloacetic ester. 
 The possibilities of using oxaloacetic ester in the synthesis of various heterocycles are significantly 
extended as a result of its ability to react not only with anilines but also with phenols. Thus, ethyl 7-dimethyl-
aminocoumarin-4-carboxyliate (39) is formed in the reaction with 3-dimethylaminophenol in the presence of 
anhydrous zinc chloride [29]. 
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 It can be supposed that the reaction takes place according to the following scheme: 
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2.2. Production of Quinoline Systems from Aminoindoles and Oxaloacetic Ester 
under the Conditions of the Conrad–Limpach Reaction  
 
 2.2.1 Condensation of Substituted 4-, 5-, 6-, and 7-Aminoindoles with Oxaloacetic Ester. The 
presence of three reaction centers in the oxaloacetic ester molecule predetermines the formation of both the 
product from condensation at the carbonyl group (the enamine) and two possible amides at the two ester groups 
in the initial stage of the reaction. For aminoindoles unsubstituted at the β-position of the pyrrole ring the 
possibility of condensation at this position is not ruled out. 
 However, the authors of [30-34] established that oxaloacetic ester reacts with aminoindoles in boiling 
benzene at the carbonyl group with the exclusive formation of the corresponding enamines. In a number of cases 
the isomeric and tautomeric forms are observed in the solution. 
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 Only for 7-aminoindoles unsubstituted at the pyrrole nitrogen atom does the reaction with oxaloacetic 
ester lead to the formation of pyrroloquinoxalines 40a,b [33, 34]. 
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 2.2.2. Synthesis of Pyrrolo[2,3-h]quinolines. In boiling biphenyl the product 41 from the condensation 
of 4-amino-2,3-dimethylindole with oxaloacetic ester is transformed into the pyrroloquinoline 42, the 1H NMR 
spectra of which in DMSO-d6 indicate the presence of two tautomeric forms, the hydroxyquinoline (A) and 
quinoline (B) forms in a ratio of 3:1 (according to the integral intensity of the protons). 
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 2.2.3. Synthesis of Pyrrolo[3,2-f]quinolines. When heated in biphenyl at 280°C for 20 min the 
(5-indolyl)amino derivatives of diethyl fumarate (the enamines 42 and 43) condense to the pyrroloquinolines 44 
and 45, which in DMSO-d6 solution exist predominantly in form A. 
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 The pyrrolo[3,2-f]quinolines 48 and 49 with an α-phenyl group in the pyrrole ring were obtained by 
thermal cyclization of the corresponding enamines 46 and 47. 
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 Thus, the nature of the substituent (Me, H) at position 1 does not have a significant effect on the ratio of 
forms A and B of the obtained pyrroloquinolines. 
 On the other hand the nature of the substituent at position 6 of 5-aminoindole has a significant effect on 
the preferential formation of the cyclization product in one or the other tautomeric form. Thus, replacement of 
the methyl group in the initial compound by a methoxyl group (the enamine 50) leads to the exclusive 
production of pyrroloquinolone with the angular structure 51 (form B). 
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 By using the enamines 52-57 unsubstituted in the benzene ring in thermal cyclization reactions it is 
possible to determine the direction of annulation of the pyridine ring at the two alternative free positions to the 
amino group in the benzene ring of the indole bicycle and also the effect of the size of the substituent on the 
formation of the angular ([3,2-f]) and linear ([2,3-g]) pyrroloquinoline systems. 
 Thus, by virtue of the steric factors it must be expected that the enamines unsubstituted at position 3 
should undergo cyclization at the C-4 atom with the formation of the corresponding pyrrolo[3,2-f]quinolines. 
Actually, when heated in biphenyl compounds 52-57 are converted into the pyrroloquinolines 58-63, which in 
DMSO-d6 exist in the quinolone form B. 
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 If the steric requirements of the substituents at the β-position of the pyrrole ring of the enamine, which 
prevent cyclization at position 4 of indole, are increased it could be expected that pyrroloquinolines with linear 
fusion of the rings would be produced. However, the enamines 56 and 57 produced from 5-amino-2,3-dimethyl- 
and 5-amino-1,2,3-trimethylindoles and oxaloacetic ester under the conditions of thermal cyclization, like all the 
preceding compounds, are transformed unambiguously into the angular pyrroloquinolines 62 and 63, for which 
form B is also fixed. 
 Thus, irrespective of the nature of the substituent (H, Me, Ph) in the pyrrole part of the molecule, the 
enamines 52-57 are converted under the conditions of thermal cyclization into the corresponding pyrrolo-
[3,2-f]quinolines, which exist predominantly or exclusively in form B. 
 2.2.4. Synthesis of Substituted Pyrrolo[2,3-f]quinolines. The high-temperature behavior of 
compounds 64-67, obtained from 6-amino-5-methyl- and 6-amino-5-methoxy-2,3-dimethyl- and 6-amino-1,2,3-
trimethylindoles and oxaloacetic ester, was investigated in order to develop specific methods for the synthesis of 
pyrrolo-[2,3-f]quinolines with an α-ethoxycarbonyl-containing γ-quinolone fragment, which are structural 
analogs of vitamin PQQ – 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione. Thermal cyclization of the 
enamine 64 in boiling biphenyl leads to the production of pyrrolo[2,3-f]quinoline 68, for which both forms (A, 
B) were established in an approximately equal ratio [32]. 
 The N-methylenamine 65 also readily undergoes thermal cyclization irrespective of some steric 
hindrance to attack at position 7. Here too a mixture of forms A and B is observed for the pyrroloquinoline 69. 
 

N
R

Me
Me

Me

NH

CO2Et
EtO2C

N
R

Me
Me

Me

NH

OEtO2C

N
R

Me
Me

Me

N

OHEtO2C

64, 68  R = H (58%);   65, 69  R = Me (57%)

64, 65

68, 69 

280°С

А В

Ph2

 
 
 The pyrroloquinolines 70 and 71 are formed from 5-methoxyenamines 66 and 67 with somewhat greater 
difficulty, as seen from the longer reaction time. 
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 During the thermolysis of the enamines 72 and 73 with two free positions (5, 7) to the amino group the 
authors did not rule out the possibility of formation of a mixture of pyrroloquinolines with linear and angular 
structure. However, compound 72 undergoes exclusive cyclization to the angular pyrroloquinoline 74. 
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 The introduction of a methyl substituent to the pyrrole nitrogen atom in order to create steric hindrances 
for attack at position 7 does not change the direction of ring formation. The enamine 73 is also transformed into 
the corresponding pyrrolo[2,3-f]quinolone 75. 
 Thus, under the conditions of thermal cyclization the enamines 64-67, 72, and 73, obtained from both 
5-substituted and unsubstituted 6-aminoindoles and oxaloacetic ester, are transformed into pyrrolo-
[2,3-f]quinolines. The nature of the substituents at the pyrrole nitrogen atom also does not affect the direction of 
closure of the pyridine ring. 
 2.2.5. Synthesis of Substituted Pyrrolo[3,2-g]quinolines. In order to synthesize pyrrolo[3,2-g]quino-
lines with linear fusion of the rings the authors of [32] used the enamines 76 and 77, obtained from 6-amino-
7-methoxy-2,3-dimethyl- and 6-amino-7-methoxy-1,2,3-trimethylindoles and oxaloacetic ester, as substrates. 
Here two pyrrolo[3,2-g]quinolines 78 and 79, for which the form A was mostly identified in DMSO-d6, were 
isolated. 
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 Thus, the pyrrolo[3,2-g]quinoline system is only formed readily from 7-substituted 6-aminoindoles with 
the participation of oxaloacetic ester. 
 2.2.6. Synthesis of Substituted Pyrrolo[3,2-h]quinoline. Diethyl indolylaminofumarate 80 undergoes 
cyclization when heated in biphenyl (280°C) with the formation of pyrrolo[3,2-h]quinoline 81 [33, 34]. 
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3. PRODUCTION OF CONDENSED HETEROCYCLES WITH TWO OR MORE HETEROATOMS 
 
 Many heterocyclic diesters that are natural compounds can be obtained synthetically from amino- or 
enaminoheterocycles and oxaloacetic ester. Amino-substituted heterocycles having at least one free ortho 
position or a substituent suitable for cyclization readily condense with oxaloacetic ester. For example, diethyl 
pyridine-2,3-dicarboxylates can be obtained by the condensation of the corresponding amines with oxaloacetic 
ester by boiling in an inert solvent for 24 h (78°C) [20]. 
 This method can also be used successfully for the production of heterocyclic systems with several 
heteroatoms. Thus, diethyl 1,8-naphthiridine-2,3-dicarboxylate (82) is readily obtained by boiling 2-amino-
3-formylpyridine with oxaloacetic ester in absolute ethanol for 20 h [20]. 
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 However, if 3-amino-2-formylpyrazine is used in the reaction diethyl pyrido[2,3-d]pyrazine-
6,7-dicarboxylate (83) is produced by boiling in toluene with the addition of piperidine [20]. 
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 The cyclocondensation of oxaloacetic ester with o-diamines is a convenient method for the synthesis of 
various quinoxalines. Thus, when 1,2-diaminobenzene is boiled with the sodium salt of oxaloacetic ester in 
acetic acid for 2 h ethyl quinoxaline-3(4H)-on-2-ylacetate (84) is obtained [35]. 
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 The vinyl derivatives 85a-g, which are used for the production of polyester fibers, are easily obtained as 
a result of this reaction between quinoxaline and 4-alkylaminobenzaldehydes. 
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            f R = NO2, R1 = H (75%); g R = NHCOMe, R1 = H (75%)  
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 When heated with oxaloacetic ester in ethanol for 12 h 3-amino-2-methylaminopyridine forms a mixture 
of ethyl [2(1H)-oxo-5-azaquinoxalin-3(4H)-ylidene]acetate (86) and 2-ethoxycarbonyl-5-methyl-3,4-dihydro-
5H-pyrido[2,3-b][1,4]diazepin-4-one (87) [36]. 
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 Compound 86 can then react with chloroacetyl chloride in the presence of sodium hydride in toluene 
with heat, leading to the formation of 10-chloroacetyl-4-ethoxycarbonyl-5-methyl-5,10-dihydro-2H-pyrano-
[2,3-b]pyrido[2,3-e]pyrazin-2-one (88). The authors suggest that this process probably takes place in the 
following way: The chloroacetyl chloride acylates compound 86 in the presence of sodium hydride with the 
formation of the intermediate X; the basic medium then catalyzes the formation of chloroketene, which 
participates in cyclocondensation with the formation of the intermediate Y. Subsequent elimination of hydrogen 
chloride leads to compound 88. 
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 The reaction of oxaloacetic ester with various hydrazines forms the basis of the construction of seven-
membered diazepine structures. Thus, the product from the condensation of 1,3-dimethyl-6-
methylhydrazinouracil and oxaloacetic ester readily undergoes cyclization when heated in toluene and forms 
dihydropyrimidodiazepinetrione 89. In the case of 6-methylhydrazino-2-methylthiopyrimidine, together with the 
formation of the diazepinedione 90, there is the alternative possibility of cyclocondensation with the formation 
of the six-membered pyridazine structure 91a [37]. 
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 Analogous results were obtained when dimethyl oxaloacetate was used [38]. 
 The synthesis of pyrimido[4,5-c]pyridazines by the cyclization of α-keto esters with 6-(1-alkylhydra-
zino)isocytosines was described in [39]. Oxaloacetic ester was also used as α-keto ester. 7-Aminopyrimido-
[4,5-c]pyridazine-4,5(1H,6H)-dione 91b is formed as a result of heating the initial substances in methanol for 
48 h. 
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 The triazepine derivative 92 can be obtained from anthranilohydrazide [40], whereas only the 
corresponding 2-nitrophenylhydrazones 94a,b are formed from substituted 2-nitrophenylhydrazines 93a,b [41]. 
 
 

131 



N
H

NH2

O
NH2

O
N
H

N

NH2

CO2Et

CO2Et

 

N
H

N
H

NH

CH2CO2Et

O

CO2Et
+

92

AcOH∆

Me2CO
1

 

N
H

NH2

NO2

R
R

N
H

N

NO2

R
R1

CO2Et

CO2Et
+

93a,b

93, 94 a R = R1 = H (73%);   b R = NO2, R1 = NHNH2 (65%)

1

94a,b

∆
1

 
 
 Derivatives of 3-hydrazinotetrahydropyridazine-3,6-dione (95) react readily with oxaloacetic ester with 
the formation of bis(ethoxycarbonyl)alkylidene derivatives 96 [42]. The condensation product can exist both in 
the enamine form 96a and in the imine form 96b, and further cyclization by boiling in alcohol leads to the 
formation of compounds 97 and 98. 
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 For cyclic hydrazonium salts 99a,b in reaction with oxaloacetic ester cyclocondensation takes place at 
position 8 with the formation of derivatives of benzazulenes 100a,b. In the case of compound 99b the process is 
accompanied by deprotonation, leading to compound 101 [43]. 
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 In reaction with aromatic azides the dicarbon fragment of oxaloacetic ester participates in the formation 
of a triazole ring. Thus, reaction with 2-nitrophenyl azides 102a-d by heating at 55°C in alcohol for several 
hours gives a mixture of diethyl 1-(2-nitrophenyl)-1,2,3-triazole-4,5-dicarboxylates 103a-d (20-30%), 
5-carboxy-4-ethoxycarbonyl-1,2,3-triazoles 104a-d, and their decarboxylation products (4-ethoxycarbonyl-
1,2,3-triazoles 105a-d), and also benzoxadiazole N-oxides 106a-d and anilines 107a-d, which can be separated 
by chromatography [44]. 
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 The nitrophenyltriazoles 103a-d find other applications in synthesis. Thus, after reduction of the nitro 
group and subsequent intramolecular cyclization derivatives of triazoloquinoxalines 108a-d are formed, and they 
react readily with dimethyl sulfate, forming the N-methyl derivatives 109a-d. 
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